
Java PerformanceTuning

Java Memory Model

3

Java Runtime
Environment

4

Memory model

• The Java memory model specifies how the JVM works with the
computer's memory (RAM).

• The Java virtual machine is a model of a whole computer so this
model naturally includes a memory model

• Divided into

– Heap

– Method area

– Stack area

– …..etc

5

Memory model

6

Memory model

Heap:
• shared runtime data area and stores the actual object in a memory
• JVM provides the user control to initialize or vary the size of heap as

per the requirement.
• When a new keyword is used, object is assigned a space in heap,

but the reference of the same exists onto the stack.

Stack:
• A stack is created at the same time when a thread is created and is

used to store data and partial results which will be needed while
returning value for method and performing dynamic linking.

• Stacks can either be of fixed or dynamic size. The size of a stack can
be chosen independently when it is created

7

Memory model

Method area:

• memory block that stores the class code, variable code(static
variable, runtime constant), method code, and the constructor of
a Java program.

• It stores class-level data of every class such as the runtime
constant pool, field and method data, the code for methods

Native Method stacks:

• Also called as C stacks, native method stacks are not written in
Java language

• This memory is allocated for each thread when its created. And it
can be of fixed or dynamic nature

8

Memory model

Program Counter:

• Each JVM thread which carries out the task of a specific method
has a program counter register associated with it

• The non native method has a PC which stores the address of the
available JVM instruction

Cache Memory

• This includes Code Cache

• Stores compiled code (i.e. native code) generated by JIT compiler,
JVM internal structures etc

• When Code Cache exceeds a threshold, it gets flushed

9

Memory model - sample

class Emp {

int id;

String emp_name;

public Emp(int id, String emp_name) {

this.id = id;

this.emp_name = emp_name;

}

}

public class Emp_detail {

private static Emp Emp_detail(int id, String
emp_name) {

return new Emp(id, emp_name);

}

public static void main(String[] args) {

int id = 21;

String name = "Maddy";

Emp person = null;

person = Emp_detail(id, name);

}

}

10

Memory model - sample

11

Heap Memory

12

Garbage Collection

• The JVM heap is physically divided into two parts: nursery (young
generation) and old space (or old generation)

• The nursery is a part of the heap reserved for the allocation of new
objects.

• When the nursery becomes full, all the objects that have lived long
enough in the nursery are promoted (moved) to the old space, thus
freeing up the nursery for more object allocation

• This garbage collection is called Minor GC.

• The nursery is divided into three parts – Eden Memory and
two Survivor Memory spaces

• When old space is full, Major GC happens

13

Garbage Collection

• Most of the newly created objects are located in the Eden Memory
space

• When Eden space is filled with objects, Minor GC is performed and
all the survivor objects are moved to one of the survivor spaces

• Minor GC also checks the survivor objects and moves them to the
other survivor space.

• So at a time, one of the survivor space is always empty

• Objects that have survived many cycles of GC, are moved to the
old generation memory space.

• Usually, it is done by setting a threshold for the age of the nursery
objects before they become eligible to promote to the old
generation

14

SutvivorRatio

• The SurvivorRatio parameter controls the size of the two survivor
space

• -XX:SurvivorRatio=6 sets the ratio between each survivor space
and eden to be 1:6

• If survivor spaces are too small, copying collection overflows
directly into the old generation

• If survivor spaces are too large, they will be empty

• At each GC, the JVM determines the number of times an object
can be copied before it is tenured, called the tenure threshold

15

Garbage Collection

• All new objects are created in Eden space

• When the given space is full, the application tries to create another object
and JVM tries to allocate something on the Eden but the allocation fails

• That actually causes minor GC

16

Garbage Collection

• After the first minor GC, all live objects will be moved to Survivor 1 with the
age is 1 and the dead objects will be deleted

17

Garbage Collection

• new objects get allocated in Eden space again. There are some objects
that become unreachable on both Eden space and Survivor 1

18

Garbage Collection

• After the second Minor GC, all alive objects will be moved to Survivor 2
(from both Eden with age 1 and Survivor 1 with age 2) and the dead object
will be deleted

19

Garbage Collection

• new objects are allocated on Eden space, after a few moments
some objects are unreachable from both Eden and Survivor 2

20

Garbage Collection

• After the third minor GC, all live objects will be move from both
Eden and Survivor 2 to Survivor 1 with age increase and dead
objects will be deleted

21

Garbage Collection

• An object that is living longer in Survivor will be promoted to the old
generation (Tuner) if the age is greater than -
XX:MaxTenuringThreshold

22

MaxTenuringThreshold

• When tuning the Java garbage collector (GC), 'survivor spaces'
can be configured to "age" new objects.

• The Java command line parameter -XX:MaxTenuringThreshold
specifies for how many minor GC cycles an object will stay in the
survivor spaces until it finally gets tenured into the old space

Default value is 15.

If a value greater than 15 is set, this now specifies that objects
should never tenure and leads heap fragmentation

• A fragmented heap cannot accommodate as many objects as a
compacted heap

23

PermGen / Metaspace

• Permanent Generation or “Perm Gen” contains the application
metadata required by the JVM to describe the classes and
methods used in the application.

• Perm Gen is populated by JVM at runtime based on the classes
used by the application.

• Perm Gen also contains Java SE library classes and methods

• With Java 8, Perm Gen is replaced by Metaspace which is not part
of the heap

• Most allocations of the class metadata are now allocated out of
native memory.

24

PermGen / Metaspace (contd)

• Metaspace by default auto increases its size (up to what the
underlying OS provides), while Perm Gen always has fixed
maximum size.

• The theme behind the Metaspace is that the lifetime of classes and
their metadata matches the lifetime of the class loaders.

• That is, as long as the classloader is alive, the metadata remains
alive in the Metaspace and can’t be freed.

25

Other structures

Method Area

• Method Area used to store class structure, static variables and
code for methods and constructors

• Although the method area is logically part of the heap, simple
implementations may choose not to either garbage collect or
compact it

Memory Pool

• Memory Pools are created by JVM memory managers to create a
pool of immutable objects.

• Memory Pool can belong to Heap or Perm Gen, depending on JVM
memory manager implementation.

26

Other structures

Runtime Constant Pool

• Runtime constant pool is a per-class runtime representation of a
constant pool in a class. It contains class runtime constants and
static methods.

• Runtime constant pool is part of the method area.

27

Setting memory sizes

-Xms sets initial heap size

-Xmx sets maximum heap size

-XX:PermSize sets initial size of permgen

-XX:MaxPermSize sets maximum size of permgen

-XX:NewSize sets initial size of young generation

-XX:MaxNewSize sets max size of young generation

-XX:SurvivorRatio sets ratio of eaden space to survivor space

-XX:NewRatio sets ratio old space to new space

-XX:MetaspaceSize sets initial size of metaspace

-XX:MetaspaceSize sets max size of metaspace

-Xss sets the size of thread stack for each thread

28

Other JVM flags

-XX:MaxTenuringThreshold threshold for moving to old
 generation

-XX:+PrintGCDetails to display the settings and log

-XX:+PrintGCTimeStamps

-XX:+PrintGCDateStamps

-Xloggc:file to save the logs to a file

-verbose:gc

29

JVM flags - example

-Xms2560m

-Xmx2560m

-XX:NewSize=1536m

-XX:MaxNewSize=1536m

-XX:MetaspaceSize=768m

-XX:MaxMetaspaceSize=768m

-XX:MaxTenuringThreshold=5

-XX:SurvivorRatio=2

30

GC Logs

31

How Garbage Collector works

• When an object is no longer used, the garbage collector reclaims
the underlying memory and reuses it for future object allocation.
This means there is no explicit deletion and no memory is given
back to the operating system

• Special objects called garbage-collection roots (GC roots) are used
to traverse the object graph to identify application-reachable
objects

• There are 4 kinds of GC Roots

– Local variables

– Active java threads

– Static variables

– JNI references

32

How Garbage Collector works (contd)

33

Garbage Collection phases

• Mark: garbage collector identifies which objects are in use and which ones
are not

• Sweep: after the marking phase has completed all space occupied by
unvisited objects is considered free and can thus be reused to allocate
new objects

• Compact: after marking move all marked – and thus alive – objects to the
beginning of the memory region

• Copy: similar to the Mark and Compact Here the marked objects are
copied to different empty memory region.

Mark and Copy approach has some advantages as copying can occur
simultaneously.

The disadvantage is the need for one more memory region, which
should be large enough to accommodate survived objects

34

Types of Garbage Collectors

Serial Garbage Collector

• This is the simplest GC implementation

• it basically works with a single thread

• As a result, this GC implementation freezes all application threads
when it runs (stop the world)

• It’s not a good idea to use it in multi-threaded applications, like
server environments.

• It is best suited for applications that don’t have small pause time
requirements and run on client-style machines

• Flag to select:

 -XX:+UseSerialGC

35

Types of Garbage Collectors

Serial Garbage Collector

36

Types of Garbage Collectors(contd)

Parallel Garbage Collector

• Parallel Garbage Collector is the default GC used by the JVM.

• The working of the parallel garbage collector is the same as the
serial garbage collector

• The only difference is that serial garbage collector uses
a single thread and the parallel garbage collector
uses multiple threads

• The numbers of garbage collector threads can be controlled with
the command-line option -XX:ParallelGCThreads=<N>

• Flag to select:

 -XX:+UseParallelGC

37

Types of Garbage Collectors(contd)

Parallel Garbage Collector

38

Types of Garbage Collectors(contd)

Parallel Old Garbage Collector

• This is the same as Parallel GC except that it uses multiple threads
for both young generation and old generation garbage collection

• Flag to select:

 -XX:+UseParallelOldGC

39

Types of Garbage Collectors(contd)

Concurrent mark sweep (CMS) Garbage Collector

• CMS uses multiple threads that scan the heap and during the
scanning, marking, sweeping

• It does not freeze the application's threads during the garbage
collection.

• GC threads concurrently execute with the application's threads.

• For this reason, it uses more CPU in comparison to other GC

• It also freezes all the threads of the application if any change
happens in

• Flag to select:

 -XX:+UseConcMarkSweepGC

40

Types of Garbage Collectors(contd)

G1 (Garbage first) Garbage Collector

• designed for applications running on multi-processor machines
with large memory space.

• It’s available from the JDK7 and in later releases.

• G1 collector partitions the heap into a set of equal-sized heap
regions,

• After the mark phase is complete, G1 knows which regions are
mostly empty

• It collects in these areas first, which usually yields a significant
amount of free space

• Flag to select:

 -XX:+UseG1GC

41

How to make the objects ready for GC

• Create an object inside a method. After methods are executed,
all objects called within those methods become unreachable

• Nullify the reference variable. You can change a reference
variable to NULL

• Re-assign the reference variable. Instead of nullifying the
reference variable, you can also reassign the reference to another
object.

• Create an anonymous object. An anonymous object doesn’t
have a reference, so the garbage collector will mark and remove it
during the next garbage collection cycle.

42

Best practices for GC

• Choose the right garbage collector:

• Monitor and analyze garbage collection logs:

• Optimize heap size:

• Tune garbage collection parameters:

• Minimize object creation:

• Use parallelism and concurrency:

43

Class Loading Activities

• Java’s dynamic class loading functionality is handled by the Class
Loader SubSystem.

• It loads, links and initializes the class when it refers to a class for
the first time

• Class Loader SubSystem is responsible for following 3 activities

1. Loading

2. Linking

3. Initialization

44

Loading

• Loading means reading class files from hard disk and store corresponding
binary data in method area.

• For each class file JVM will store corresponding information in method
area, such as

1. Fully qualified name of class

2. Fully qualified name of immediate parent class

3. Methods info

4. Variable info

5. Constructor info

6. Modifiers info

7. Constant pool info

8. whether .class file represents class or Interface or enum

• After loading .class file JVM creates an object for that loaded class on the
Heap memory of type java.lang.Class.

45

Linking

• Linking consists of three activities

 1. verify (verification)

— Following points are checked in Verification process.

— It ensures that Binary representation of a class is a
structurally correct or not.

— JVM will check whether the .class file is generated by valid
compiler

— .class file is properly formatted or not. (bytecode verifier)

— If the binary representation of a class or interface does not
satisfy the static or structural constraints then a VerifyError
is thrown

46

Linking

 2. prepare (preparation)

— In this phase, JVM will allocate memory for class level or
interface level static variables and assign default values.

 3. resolve (resolution)

– Resolution is the process of dynamically determining
concrete values from symbolic references

– In simple words, it is the process of replacing symbolic
names in our program with original memory references from
method area

47

Initialization

• In Initialization phase, all static variables are assigned with original
values

• static blocks will be executed from parent to child and from top to
bottom.

48

Illustration

• For the above class, class loader loads

– Test.class

– Object.class – parent class

– String.class

– Student.class

public class Test {

public static void main(String[] arg) {

String s = new String("Pumpkin");

Student s1 = new Student();

}

}

49

Types of Class Loaders

• Class Loader Subsytem contains following three types of class
Loaders

1. Bootstrap Class Loader or primordial Class Loader

2. Extension Class Loader

3. Application Class Loader or System Class Loader

50

Bootstrap Class Loader

• It is responsible to load core Java API classes i.e. the classes
present in rt.jar

• This location is called bootstrap class path i.e. Bootstrap Class
Loader is responsible to load classes from bootstrap class path.

• Bootstrap Class Loader is by default available with every JVM.

• It is implemented in native languages like C / C++ and not
implemented in java.

51

Extension Class Loader

• The extension class loader is a child of the bootstrap class loader,
and takes care of loading the extensions of the standard core Java
classes

• The extension class loader loads from the JDK extensions directory,
usually the $JAVA_HOME/lib/ext directory

52

System Class Loader

• It is the child class of Extension Class Loader

• This class loader is responsible to load classes from application
class path

• It internally uses environment variable classpath

• It is implemented in java and the corresponding .class file name is
sun.misc.Launcher$AppClassLoader.class

53

Class Loading Mechanism

• Whenever JVM come across particular class, first it will check
whether the corresponding .class file is loaded or not.

• If it is already loaded in method area, then JVM will uses it

• If it is not loaded then JVM request class loader sub system to load
that particular class.

• Then class loader subsystem handovers the request to Application
class loader.

• Application class loader delegates the request to Extension class
loader which in turn delegates the request to Bootstrap class loader.

54

Class Loading Mechanism

• Then Bootstrap class loader will search in Bootstrap class path and
load it

• If it is not available Bootstrap class loader delegates the request to
Extension class loader.

• Extension class loader will search in Extension class path. And load
the class

• If not available, extension class loader delegates the request to
application class loader.

• Application class loader will search in Application class path. If it is
available, then it will be loaded otherwise we will get runtime
exception saying ClassNotFoundException.

55

Class Loading Mechanism (contd)

56

Advantages

• As a consequence of the delegation model, it’s easy to
ensure unique classes, as we always try to delegate upwards.

• For example if we create java.lan.String, it is never loaded

• In addition, classes loaded by child class loader can use classes
loaded by parent class loader

• For instance, classes loaded by the system class loader have
visibility into classes loaded by the extension and bootstrap class
loaders, but not vice-versa

• To illustrate this, if Class A is loaded by the application class loader,
and class B is loaded by the extensions class loader, then both A and
B classes are visible as far as other classes loaded by the
application class loader are concerned.

• Class B, however, is the only class visible to other classes loaded by
the extension class loader.

57

CustomClassLoaders

• Custom class loaders are helpful for more than just loading the
class during runtime.

• A few use cases might include:

1. Helping to modify the existing bytecode

2. Creating classes dynamically suited to the user’s needs,
e.g. in JDBC, switching between different driver
implementations is done through dynamic class loading.

3. Implementing a class versioning mechanism while
loading different bytecodes for classes with the same
names and packages

4. Getting class code from network

58

CustomClassLoaders

• Isolation: You want to load and unload plugins dynamically without
affecting the main application. Custom class loaders enable isolation
by loading each plugin in its own class loader.

• Versioning: If you have different versions of a library in your
application, custom class loaders can help you manage class
versioning, ensuring that each component uses the appropriate
version

• Dynamic Loading: For situations where you want to load classes
from sources other than JAR files, such as databases or remote
services, custom class loaders are invaluable.

59

CustomClassLoaders

public class CustomClassLoader extends ClassLoader {

@Override
public Class findClass(String name) {

byte[] b = loadClassFromFile(name);
return defineClass(name, b, 0, b.length);

}

private byte[] loadClassFromFile(String fileName) {

}
}

60

Profilers

• A Java Profiler is a tool that monitors operations at the JVM level

• These code constructs and operations include object creation,
thread executions, memory usage and garbage collections

• Some known profilers:

– Jprofiler

– Yourkit

– Java VisualVM

– the NetBeans Profiler

– the IntelliJ Profiler.

Memory Leaks

62

Class loaded multiple times

• It is the very purpose of a classloader to load classes in isolation to
each other

• Application servers use this feature of classloaders to load different
applications or parts of applications in isolation.

• This makes it possible to load multiple versions of the same library
for different applications.

• Due to configuration errors, we can easily load the same version of
a library multiple times

• Make sure you do not have too many class loaders

63

Class loader leaks

• As classes are referenced by their classloaders,

• they get removed when the classloader is garbage-collected.

• That will happen only when the application gets unloaded

• A classloader will be removed by the garbage collector only if
nothing else refers to it.

• All classes hold a reference to their classloader and all objects hold
references to their classes.

• As a result, if an application gets unloaded but one of its objects is
still being held (e.g., by a cache or a thread-local variable), the
underlying classloader is not removed by the garbage collector!

• This will happen only if you redeploy your application without
restarting the application server

• To identify such a leak, un-deploy your application and then trigger
a full heap dump (make sure to trigger a GC before that). Then
check if you can find any of your application objects in the dump

64

Mutable static fields

• Static fields are de facto GC roots, which means they are never
garbage-collected!

• For convenience alone, static fields and collections are often used
to hold caches or share state across threads.

• Mutable static fields need to be cleaned up explicitly.

• The cleanup will not take place, resulting in a memory leak.

• Never use mutable static fields—use only constants.

• If you need mutable static fields, make sure of tracking them or try
some other technique

65

JNI Memory Leaks

• Java Native Interface (JNI) memory leaks are hard to find.

• Every Java object created in a native method begins its life as a
local reference,

• which means that the object is referenced until the native method
returns.

• In some cases you want to keep the created object even after the
native call has ended.

• To achieve this you can either ensure that it is referenced by some
other Java object or you can change the local reference into a
global reference

• The only way to discover JNI memory leaks is to use a heap-dump
tool that explicitly marks native references.

• It's better to assign the desired object to the field of a normal Java
class.

66

ThreadLocal Variables

• ThreadLocal is a feature that enables the creation of thread-
specific variables.

• Unlike regular variables that are shared across threads,
a ThreadLocal variable provides each thread with its own,
independent copy.

• This is particularly useful in multi-threading environments where
data isolation per thread is required

• ThreadLocal initializes the variable the first time a thread accesses
it, using an initialValue method.

• The thread can then set or get this variable’s value throughout its
execution

67

Thread Pool

• The Thread Pool pattern helps to save resources in a
multithreaded application and to contain the parallelism in certain
predefined limits

• When we use a thread pool, we write our concurrent code in the
form of tasks and submit them for execution to an instance of a
thread pool.

• This instance controls several re-used threads for executing these
tasks

68

Thread Pool

69

ThreadLocal in Thread Pool

• the application borrows a thread from the pool.

• Then it stores some thread-confined values into the current
thread’s ThreadLocal.

• Once the current execution finishes, the application returns the
borrowed thread to the pool.

• After a while, the application borrows the same thread to process
another request.

• Since the application didn’t perform the necessary cleanups last
time, it may re-use the same ThreadLocal data for the new
request.

• This may cause surprising consequences in highly concurrent
applications.

70

ThreadLocal Memoy Leaks

• ThreadLocals are supposed to be garbage collected once the
holding thread is no longer alive.

• But the problem arises when we use ThreadLocals in Thread pools

• Modern application servers use a pool of threads to process
requests, instead of creating new ones

• If any class creates a ThreadLocal variable, but doesn’t explicitly
remove it, then a copy of that object will remain with the
worker Thread

• ThreadLocals provide the remove() method, which removes the
current thread’s value for this variable

71

Problem with large classes

• At times it is possible to have a class with lot of static variables and
methods

• These classes occupy lot of memory
• Split these classes into smaller classes so that only those

classes which are being used remain in the memory and the
other classes are unloaded when not used

Coding Techniques

73

Understanding Collections

Synchro
nized?

ClassInterface

Fastest Set; slower than HashMap but
implements the Set interface
(HashMap does not)

NoHashSetSet

Slower than HashSet; provides iteration of
keys in order

NoTreeSet

Fastest MapNoHashMapMap

Slower than HashMap, but faster than
synchronized HashMap

YesHashtable

Slower than Hashtable and HashMap;
provides iteration of keys in order

NoTreeMap

Fastest ListNoArrayListList

74

Optimize the code

• Understand String class
• Understand StringBuilder and StringBuffer classes

• Use regex for string complex comparisons

• Avoid BigInteger and BigDecimal

• Avoid large methods

• Avoid large classes (split them)

• Understand primitives vs Wrappers

• Database connection pooling

• Use PrearedStatement instead of Statement in JDBC

75

JDBC Statement

• The JDBC Statement class has a few flaws

Statement st = con.createStatement();

String username = “ramana"; // user input

String query = "SELECT user FROM users WHERE name = '" + username + "'";

ResultSet result = st.executeQuery(query);

• If the user were to pass ‘ OR 1=1– the resulting query would become:

SELECT user FROM users WHERE username = '' OR 1=1 -- ‘

• This would cause the query to return all records since the OR 1=1 condition is
always true.

• The double dash — at the end is a comment in SQL, which causes the rest of
the original query to be ignored.

• This type of attack is called SQL Injection.

76

Logging

• Before you create a debug message, you should always check the current log
level first.

• Otherwise, you might create a String with your log message that will be
ignored afterward

• The following code builds a string which may not be used
log.debug(String.format(“User [%s] called method X with [%d]”, userName, i));

• It’s better to check the current log level first before you create the debug
message.

if (log.isDebugEnabled()) {
log.debug(“User [” + userName + “] called method X with [” + i + “]”);
}

77

Recursion

• Recursion is good in solving complex problems where loops cannot be
used

• However, you should use recursion sparingly

• In the iterative approach, the local variables are created once.

• However, in the case of the recursion, for each method call a stack
frame with local variables is created.

• The rule is – do not use recursion if loops can be used

78

Is JPA preferable to JDBC

• JPA is a Java standard for binding Java objects to records in a relational
database

• Handling object persistence is breeze with JPA

• But for simple operations JPA has its own overhead

79

Optimize SQL queries

• Add missing indexes

• Use indexes effectively

• Check for unused indexes

• Reduce the use of wildcard characters

• Use wildcards at the end of a phrase only

• Use appropriate data types and layouts

• Avoid redundant or unnecessary data retrieval

• use exists() instead of count()

• Avoid subqueries (join may be better)

• Avoid too many JOINs

• Avoid using SELECT DISTINCT

• Use SELECT fields instead of SELECT *

• Minimize large write operations

• Create joins with INNER JOIN (not WHERE)

